Algorithms for risk stratification in patients with COVID-19
Keywords:
COVID-19, risk, nomogram, algorithms, stratification, treatmentAbstract
Introduction: risk prediction and predictive models are known for their usefulness in estimating disease planning and action. The present work has the objective of developing a system of algorithms for risk stratification in the care process of patients with COVID-19.Introducción.Objective: to develop a system of algorithms for risk stratification in the care process of patients with COVID-19.
Methods: the algorithms were designed based on a predictive model developed in a cohort of 150 patients from the “Manuel Fajardo” Hospital with the diagnosis of COVID-19 in the period from March to June 2020. They were constructed with the results obtained in the different stages of the research and the expert criteria of the authors. It includes the application of the risk prediction nomogram created with the variables that are part of the definitive results of the model.
Results: for the initial evaluation of patients, age, comorbidities, clinical manifestations and the Quick SOFA prognostic scale were taken into account, which define where the patient is admitted. Chest X-ray and the application of the predictive nomogram, which classifies patients as high or low risk, are included in the hospitalization wards. Guidelines are established for the management of high-risk patients and treatment recommendations are made once the alterations in the complementary tests have been determined.
Conclusions: risk stratification algorithms constitute a tool for the treatment of patients with COVID-19 and offer therapeutic interventions that halt disease progression.
Downloads
References
1.Gispert E, Castell-Florit P. Respuestas desde la salud pública a la pandemia por el coronavirus SARS-CoV-2. Rev Cubana Salud Pública [Internet]. 2020 [citado 05/05/2021];46(Suppl 1):e2568. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662020000500010
2.Medina-Mendieta J, Cortés-Cortés M, Cortés-Iglesias M, Pérez-Fernández A, Manzano-Cabrera M. Estudio sobre modelos predictivos para la COVID-19 en Cuba. Medisur [Internet]. 2020 [citado 02/05/2021];18(3):431-442. Disponible en: http://medisur.sld.cu/index.php/medisur/article/view/4703/3164
3.Vélez M, Velásquez Salazar P, Acosta Reyes J, Vera Giraldo CY, Santiago Franco J, Jiménez C, et al. Factores clínicos pronósticos de enfermedad grave y mortalidad en pacientes con COVID-19 [Internet]. Medellín: Universidad de Antioquia; 2020 [citado 20/05/2021]. Disponible en: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/COVID-19/udea-uned_sintesisrapida_covid-19_pronostico_22abril2020.pdf
4.Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet [Internet]. 2020 [citado 20/05/2020];395(10239):1763-1770. Disponible en: https://www.sciencedirect.com/science/article/pii/S0140673620311892. https://doi.org/10.1016/s0140-6736(20)31189-2
5.Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet [Internet]. 2020 [citado 22/05/2021];395(10229):1054-1062. Disponible en: https://www.sciencedirect.com/science/article/pii/S0140673620305663. https://doi.org/10.1016/S0140-6736(20)30566-3
6.Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal. BMJ [Internet]. 2020 [citado 22/05/2021];369:m1328. Disponible en: https://www.bmj.com/content/369/bmj.m1328. https://doi.org/10.1136/bmj.m1328
7.Organización Panamericana de la Salud. ¿Por qué los modelos predictivos son cruciales en la lucha contra la COVID-19? [Internet]. Washington, D.C.: OPS; 2020 [citado 20/05/2021]. Disponible en: https://iris.paho.org/bitstream/handle/10665.2/52440/OPSEIHISCOVID-19200007_spa.pdf
8.Herrera Cartaya CE, Betancourt Cervantes J, Lage Dávila A, Barreto Fiu EE, Sánchez Valdés L, Chávez González E, et al. Variables associated with severity in COVID-19 patients. Int J Med Surg Sci [Internet]. 2021 [citado 27/08/2021];8(3):1-15. Disponible en: https://revistas.uautonoma.cl/index.php/ijmss/article/view/1612. https://doi.org/10.32457/ijmss.v8i3.1612
9.Herrera Cartaya CE, Lage Dávila A, Betancourt Cervantes J, Barreto Fiu EE, Sánchez Valdés L, Crombet Ramos T. Nomograma de predicción para la estratificación del riesgo en pacientes con COVID-19. Eur J Health Res [Internet]. 2021 [citado 27/08/2021];7(2):1-19. Disponible en: https://revistas.uautonoma.cl/index.php/ejhr/article/view/1592. https://doi.org/10.32457/ejhr.v7i2.1592
10.Albitar O, Ballouze R, Ooi JP, Sheikh Ghadzi SM. Risk factors for mortality among COVID-19 patients. Diabetes Res Clin Pract [Internet]. 2020 [citado 27/08/2021];166:108293. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332436/. https://dx.doi.org/10.1016/j.diabres.2020.108293
11.Li G, Liu Y, Jing X, Wang Y, Miao M, Tao L, et al. Mortality risk of COVID-19 in elderly males with comorbidities: a multi-country study. Aging (Albany NY). [Internet]. 2021 [citado 22/05/2021];13(1):27-60. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7835001/. https://dx.doi.org/10.18632/aging.202456
12.Kang SJ, Jung SI. Age-Related Morbidity and Mortality among Patients with COVID-19. Infect Chemother [Internet]. 2020 [citado 22/05/2021];52(2):154–164. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335648/. https://dx.doi.org/10.3947/ic.2020.52.2.154
13.Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy [Internet]. 2020 [citado 22/05/2021];75(7):1730-1741. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32077115/. https://doi.org/10.1111/all.14238
14.Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol [Internet]. 2020 [citado 22/05/2021];109(5):531-538. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7087935/. https://dx.doi.org/10.1007/s00392-020-01626-9
15.Sharma Paudel S. A meta-analysis of 2019 novel coronavirus patient clinical characteristics and comorbidities [Preprint]. Res Square [Internet]. 08 April, 2020 [citado 22/05/2021]:[aprox. 11 p.]. Disponible en: https://www.researchsquare.com/article/rs-21831/v1. https://doi.org/10.21203/rs.3.rs-21831/v1
16.Argenziano MG, Bruce SL, Slater CL, Tiao JR, Baldwin MR, Barr RG, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. BMJ [Internet]. 2020 [citado 20/05/2021];369:m1996. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7256651/. https://dx.doi.org/10.1136/bmj.m1996
17.Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med [Internet]. 2020 [citado 24/05/2021];383(25):2451-2460. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32412710/. https://doi.org/10.1056/nejmcp2009575
18.Ghimire S, Sharma S, Patel A, Budhathoki E, Chakinala R, Khan H, et al. Diarrhea Is Associated with Increased Severity of Disease in COVID-19: Systemic Review and Metaanalysis. SN Compr Clin Med [Internet]. 2021 [citado 24/05/2021];3(1):28-35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7787639/. https://dx.doi.org/10.1007/s42399-020-00662-w
19.Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA [Internet]. 2016 [citado 25/05/2021]:315(8):801-810. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968574/. https://dx.doi.org/10.1001/jama.2016.0287
20.Lalueza A, Lora Tamayo J, de la Calle C, Sayas Catalán J, Arrieta E, Maestro G, et al. Utilidad de las escalas de sepsis para predecir el fallo respiratorio y la muerte en pacientes con COVID-19 fuera de las Unidades de Cuidados Intensivos. Rev Clin Esp [Internet]. 2020 [citado 22/05/2021]:358-363. Disponible en: https://www.sciencedirect.com/science/article/pii/S0014256520302800. https://doi.org/10.1016/j.rce.2020.10.004
21.Herrera Cartaya CE, Betancourt Cervantes JR, Lage Dávila A. El paciente alto riesgo en la COVID-19, definición para mejorar las oportunidades de las intervenciones terapéuticas. Medicentro Electrónica [Internet]. 2021 [citado 08/10/2021];25(3):542-548. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30432021000300542
22.Ji D, Zhang D, Xu J, Chen Z, Yang T, Zhao P, et al. Prediction for Progression Risk in Patients With COVID-19 Pneumonia: The CALL Score. Clin Infect Dis [Internet]. 2020 [citado 08/04/2021];71(6):1393-1399. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184473/. https://dx.doi.org/10.1093/cid/ciaa414
23.Du RH, Liang LR, Yang CQ, Wang W, Cao TZ, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J [Internet]. 2020 [citado 08/04/2021];55(5):2000524. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144257/. https://dx.doi.org/10.1183/13993003.00524-2020
24.Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci [Internet]. 2020 [citado 23/05/2021];57(6):389-399. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284147/. https://dx.doi.org/10.1080/10408363.2020.1770685
25.Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, et al. Association Between Hypoxemia and Mortality in Patients with COVID-19. Mayo Clin Proc [Internet]. 2020 [citado 23/05/2021];95(6):1138-1147. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284147/. https://dx.doi.org/10.1016/j.mayocp.2020.04.006
26.Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol [Internet]. 2020 [citado 23/05/2021];51(6):613-628. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7533045/. https://dx.doi.org/10.1007/s10735-020-09915-3
27.Parra Gordo ML, Buitrago Weiland G, Grau García M, Arenaza Choperena G. Aspectos radiológicos de la neumonía COVID-19: evolución y complicaciones torácicas. Radiología [Internet]. 2021 [citado 23/05/2021];63(1):74-88. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687358/. https://dx.doi.org/10.1016/j.rx.2020.11.002
Downloads
Published
How to Cite
Issue
Section
License
Authors who have publications with this journal agree to the following terms:
- Authors will retain their copyright and assign to the journal the right of first publication of their work, which will simultaneously be subject to a Creative Commons License / Attribution-Noncommercial 4.0 International (CC BY-NC 4.0) that allows third parties to share the work as long as its author and first publication in this journal are indicated.
- Authors may adopt other non-exclusive license agreements for distribution of the published version of the work (e.g., depositing it in an institutional repository or publishing it in a monographic volume) as long as the initial publication in this journal is indicated.
- Authors are allowed and encouraged to disseminate their work through the Internet (e.g., in institutional telematic archives or on their web page) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access).