Mathematical models predictive of coronary artery disease diagnosed by calcium score

Authors

Keywords:

calcium score, coronary disease, risk factors, predictive models

Abstract

Introduction: epidemiological risk factors for coronary artery disease are closely related to the existence, evolution and complications of the disease.
Objective: to design mathematical models predictive of coronary artery disease diagnosed by calcium score from epidemiological variables.
Methods: a cross-sectional analytical study was carried out. The population consisted of 820 patients with chest pain and calcium score, the sample (246) was selected by simple random probability sampling. Logistic regression was employed from a logistic regression model (using the forward stepwise option) for each of the four coronary vessels, each model was fitted to the variables and those with coefficients significantly different from zero (p<0.05) were identified using the Wald statistic. We estimated the point Odd Ration and confidence intervals, performed internal validation and explored the performance through model discrimination with the analysis of the area under the curve and calibration through the Hosmer-Lemeshow Chi-square statistic.
Results: the predominant age group was older than 60 years (61.4%), male sex (65.9%) and arterial hypertension (68.7%). The mathematical models for each coronary vessel exclude the variable age. The following are important predictors: diabetes and smoking. The internal validation technique supports the good performance of the mathematical models obtained.
Conclusion: the result reinforces the need for predictive studies to ensure cardiovascular risk stratification by calcium score and epidemiological variables on which effective action should be taken to improve patient prognosis.

Downloads

Download data is not yet available.

Author Biographies

Elizabet Cristina Cruz Figueroa, Hospital Provincial Psiquiátrico Universitario "Dr. Luis San Juan Pérez"

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Bioestadística.

Margarita Puerto Díaz, Hospital Provincial Cardiocentro Universitario "Ernesto Guevara"

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Bioestadística.

Elaine Teresa Gutiérrez Pérez, Hospital Provincial Clínico Quirúrgico Universitario "Arnaldo Milián Castro"

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Bioestadística. Profesora Auxiliar en la Universidad de Ciencias Médicas de Villa Clara. Investigadora Agregada.

Yunet Hernández Díaz, Hospital Provincial Cardiocentro Universitario "Ernesto Guevara"

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Bioestadística.

Neisy Pérez Ramos, Universidad de Ciencias Médicas de Villa Clara

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Histología.

Belkis Yanes Milián, Universidad de Ciencias Médicas de Villa Clara

Especialista de I Grado en Medicina General Integral. Especialista de I Grado en Histología.

References

1.Sánchez-Delgado JA, Sánchez-Lara NE. Factores modificables de riesgo coronario y riesgo cardiovascular global. Rev Finlay [Internet]. 2021 [citado 20/01/2023];11(2):152-159. Disponible en:https://revfinlay.sld.cu/index.php/finlay/article/view/946

2.Organización Panamericana de la Salud. Las enfermedades cardiovasculares en las Américas: Hoja informativa [Internet]. Washington DC: OPS; 2009 [citado 20/01/2023]. Disponible en: https://www.paho.org/es/documentos/enfermedades-cardiovasculares-americas-hoja-informativa

3.Landrove Rodríguez O, Morejón Giraldoni A, Venero Fernández S, Suárez Medina R, Almaguer López M, Pallarols Mariño E, et al. Enfermedades no transmisibles: factores de riesgo y acciones para su prevención y control en Cuba. Rev Panam Salud Publica [Internet]. 2018 [citado 20/01/2023];42:e23. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6386105/. https://doi.org/10.26633/RPSP.2018.23

4.Lira MT. Estratificación de riesgo cardiovascular: conceptos, análisis crítico, desafíos e historia de su desarrollo en Chile. Rev Méd Clín Las Condes [Internet]. 2022 [citado 20/01/2023];33(5):534-544. Disponible en: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-estratificacion-riesgo-cardiovascular-conceptos-analisis-S0716864022001055. https://doi.org/10.1016/j.rmclc.2022.08.003

5.Navarrete Hurtado S, Carvajal Rivera JJ. Tomografía axial computarizada coronaria en la estratificación de riesgo. Rev Colomb Cardiol [Internet]. 2019 [citado 20/01/2023];26(S1):134-141. Disponible en: https://rccardiologia.com/previos/RCC%202019%20Vol.%2026/RCC_2019_26_S1/RCC_2019_26_S1_134-141.pdf. https://doi.org/10.1016/j.rccar.2019.04.007

6.Bitar P, Paolinelli P, Furnaro F. Tomografía computada cardiaca: estado actual. Rev Méd Clín Las Condes [Internet]. 2018 [citado 20/01/2023];29(1):33-43. Disponible en: https://www.sciencedirect.com/science/article/pii/S0716864018300117. https://doi.org/10.1016/j.rmclc.2017.12.007

7.Paramio Rodríguez A, Letrán Sarria Y, Requesen Gálvez RL, Hernández Navas M. Riesgo cardiovascular global en el consultorio 10 del Policlínico Mártires de Calabazar. Municipio Boyeros. Rev Cuba Cardiol Cir Cardiovasc [Internet]. 2021 [citado 20/01/2023];27(1):e1008. Disponible en: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/1008/pdf

8.Napoles Lizano ME, Puerto Díaz M, Moro Rodríguez RT, Ricardo Olivera D, Valdés Cantero JL. Factores de riesgos cardiovasculares y calcio score en pacientes con enfermedad arterial periférica. Rev Cuba Cardiol Cir Cardiovasc [Internet]. 2021 [citado 20/01/2023];27(3):e1103. Disponible en: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/1103/pdf

9.Guilenea FN, Casciaro ME, Pascaner AF, Balla ME, Soulat G, Mousseaux E, et al. Cuantificación del calcio aórtico en imágenes de tomografía usando redes neuronales convolucionales. Rev Argent Ing [Internet]. 2022 [citado 20/01/2023];19(10):102-109. Disponible en: https://confedi.org.ar/wp-content/uploads/2022/06/Articulo12-RADI-19.pdf

10.Michelli B, Bellandi S, Brachetta F, Knott K, Ferreyra K, Alvez A. Utilidad del score de calcio ecocardiográfico como herramienta predictiva de enfermedad coronaria obstructiva. Rev Argent Cardiol [Internet]. 2019 [citado 20/01/2023];87(6):470-473. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-37482019000600470. http://dx.doi.org/10.7775/rac.es.v87.i6.15780

11.Mondeja Contino JR, Chávez González E, Puerto Díaz M, Blay Gómez L. Escala de riesgo y estratificación pronóstica de la cardiopatía isquémica en población adulta [Internet].Convención Internacional de Salud, Cuba Salud 2022. La Habana: MINSAP; 2022 [citado 20/01/2023]. Disponible en: https://convencionsalud.sld.cu/index.php/convencionsalud22/2022/paper/viewFile/417/465

12.Pérez Muñuzuri A, González Juanatey JR, López Otero D, García Campos A, Pérez Muñuzuri V, Otero Cacho A, et al. Tecnología no invasiva para la evaluación del riesgo coronario [Internet]. Santiago de Compostela: Universidad de Santiago de Compostela; 2020 [citado 20/01/2023]. Disponible en: https://www.usc.gal/export9/sites/webinstitucional/en/investigacion/grupos/gfnl/descargas/MedicinaPersonalizada_Cardio-1.pdf

13.Llerena Rojas LR, Peix González A, Valiente Mustelier J. Técnicas de imagen no invasivas en la valoración y la prevención de la enfermedad coronaria. Rev Cuba Cardiol Cir Cardiovasc [Internet]. 2011 [citado 20/01/2023];17(Supl1):47-57. Disponible en: https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/192/132

14.Vega Abascal JB, Piriz Assa A, Nápoles Riaño D. Modelo predictivo de enfermedad cardiovascular basado en inteligencia artificial en la atención primaria de salud. Rev Cubana Med Gen Integr [Internet]. 2023 [citado 14/02/2023];39(3):e2768. Disponible en: https://revmgi.sld.cu/index.php/mgi/article/view/2768/680

15.Rodríguez Perón JM. Capacidad predictiva de un modelo para la estimación del riesgo cardiovascular en la población general [Internet]. CaliMay 2020. I Jornada Científica Virtual. Mayabeque: Facultad de Ciencias Médicas de Mayabeque; 2020 [citado 20/01/2023]. Disponible en: http://www.calimay2020.sld.cu/index.php/calymay/2020/paper/view/46/31

16.Fanego A, Dávalos K, Penayo T, Martínez M, Díaz E. Caracterización clínico-epidemiológica de los pacientes con Síndrome Coronario Agudo hospitalizados en el Servicio de Clínica Médica II del Hospital Central del Instituto de Previsión Social (IPS) entre enero a junio de 2019. Rev Cient Cienc Salud [Internet]. 2020 [citado 20/01/2023];2(2):4-10. Disponible en: http://scielo.iics.una.py/scielo.php?script=sci_arttext&pid=S2664-28912020000200004. https://doi.org/10.53732/rccsalud/02.02.2020.04

17.Shang C, Hernández Véliz D, Ferrer Arrocha M, Alonso Martínez MI, Pérez Assef H. Factores de riesgo cardiovascular en pacientes con infarto agudo de miocardio con elevación del segmento ST. CorSalud [Internet]. 2020 [citado 20/01/2023];12(1):31-37. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2078-71702020000100031

18.Alonso Álvaro L. Estudio de la inercia terapéutica en pacientes con evento cardiovascular [tesis]. Santander: Universidad de Cantabria; 2022 [citado 20/01/2023]. Disponible en: http://hdl.handle.net/10902/25752

Published

2023-11-09

How to Cite

1.
Cruz Figueroa EC, Puerto Díaz M, Gutiérrez Pérez ET, Hernández Díaz Y, Pérez Ramos N, Yanes Milián B. Mathematical models predictive of coronary artery disease diagnosed by calcium score. Acta Méd Centro [Internet]. 2023 Nov. 9 [cited 2025 Jun. 27];17(4):717-32. Available from: https://revactamedicacentro.sld.cu/index.php/amc/article/view/1839

Issue

Section

Original Articles