Binary logistic regression to create a predictive model of liver damage in the septic patient

Authors

  • Juan Miguel Rodríguez Rueda Hospital Militar Clínico Quirúrgico Comandante Manuel Fajardo Rivero
  • Vielka González Ferrer Cardiocentro Ernesto Che Guevara
  • Teresita de Jesus Montero González Hospital Militar Dr. Luis Díaz Soto
  • Ada Nersys Consuegra Carvajal Hospital Militar Clínico Quirúrgico Comandante Manuel Fajardo Rivero

Keywords:

sepsis, liver failure, hepatic insufficiency, forecasting, logistic models

Abstract

Introduction: sepsis, for all the events it unleashes, affects, directly or indirectly, all the organs. It is common to observe, in the evolution of these patients, the development of dysfunction or hepatic failure that, rarely, it is diagnosed until clinical signs such as jaundice or coagulation disorders appear. Objective: to design a predictive model of liver damage in the septic patient. Method: an observational, retrospective and developmental study of case-control, of case-control, was carried out. A total of 508 deaths were taken with clinical and pathological evidence of sepsis from the Intensive Care Unit that met the intentionality criteria, from January 2006 to December 2015 at “Manuel Fajardo Rivero” Hospital. Of these deaths, 100 cases and 100 controls were taken. Results: the variables that were included in the model, after the binary logistic regression analysis, were: multiple organ dysfunction syndrome, direct bilirubin, alkaline phosphatase, total cholesterol, creatinine, international normalized ratio and platelets. Hosmer-Lemeshow test=1,867 and p=0,985. Sensitivity of 57,69 and specificity of 100. Positive predictive value of 100 and a negative predictive value of 68,57, validity index of 78,00. The area observed under the Receiver Operating Characteristic curve is 0,922, with a significance associated to the calculated statistician of 0,000. Conclusions: the model demonstrated good discriminatory capacity and to be a good predictor of liver damage in the septic patient.

Downloads

Download data is not yet available.

Author Biographies

Juan Miguel Rodríguez Rueda, Hospital Militar Clínico Quirúrgico Comandante Manuel Fajardo Rivero

Especialista de I Grado en Medicina Interna. Especialista de II Grado en Medicina Intensiva y Emergencia. Máster en Urgencias Médicas de la Atención Primaria de Salud. Profesor Auxiliar de la Universidad de Ciencias Médicas de Villa Clara.

Vielka González Ferrer, Cardiocentro Ernesto Che Guevara

Especialista de I Grado en Bioestadística. Profesora Instructora de la Universidad de Ciencias Médicas de Villa Clara.

Teresita de Jesus Montero González, Hospital Militar Dr. Luis Díaz Soto

Especialista de II Grado en Anatomía Patológica. Máster en Educación Médica Superior. Doctora en Ciencias Médicas. Profesora Titular. Investigadora Titular.

Ada Nersys Consuegra Carvajal, Hospital Militar Clínico Quirúrgico Comandante Manuel Fajardo Rivero

Especialista de I Grado en Anestesiología y Reanimación. Máster en Urgencias Médicas de la Atención Primaria de Salud. Profesora Asistente de la Universidad de Ciencias Médicas de Villa Clara.

References

1. Knaus WA, Draper EA, Wagner DP. APACHE II: A severity of disease classification system. Crit Care Med [Internet]. 1985 Oct [citado 20 Jun 2015];13(10): [aprox. 11 p.]. Disponible en: http://journals.lww.com/ccmjournal/Abstract/1985/10000/APACHE_II__A_severity_of_disease_classification.9.aspx

2. Safari S, Shojaee M, Rahmati F, Barartloo A, Hahshemi B, Forouzanfar MM, et al. Accuracy of SOFA score in prediction of 30-day outcome of criticallyillpatients. Turk J Emerg Med. 2016 Nov 19;16(4):146-150. eCollection 2016. PubMed PMID: 27995206.

3. Raith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, et al. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and SOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admittedto the Intensive Care Unit. JAMA. 2017 Jan 17; 317(3):290-300. doi: 10.1001/jama.2016.20328. PubMed PMID: 28114553.

4. Shankar-Hari M, Phillips GS, Levy ML. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA [Internet]. 2016 Feb 23 [citado 20 Dic 2016];315(8):775-87. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/26903336

5. Montero T, Hurtado de Mendoza J, Walwyn V, Álvarez R. Importancia y diagnóstico del daño múltiple de órganos en autopsias clínicas. Rev Cubana Med Mil [Internet]. 2008 [citado 20 Jun 2014];37(2):[aprox. 6 p.]. Disponible en: http://scielo.sld.cu/pdf/mil/v37n2/mil06208.pdf

6. Montero González T, Hurtado de Mendoza J. Preguntas y respuestas sobre el Daño Múltiple de Órganos. Reflexiones acerca de la temática. Rev Cubana Med Mil [Internet]. 2010 [citado 25 Jun 2014];39(1):[aprox. 5 p.]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572010000100006

7. ISCIII: 64ª Asamblea General. Declaración de Helsinki de la AMM -Principios éticos para las investigaciones médicas en seres humanos [Internet]. Fortaleza, Brasil: ISCIII; 2013 [citado 25 Ago 2017]: [aprox. 9 p.]. Disponible en: http://www.isciii.es/ISCIII/es/contenidos/fd-investigacion/fd-evaluacion/fd-evaluacion-etica-investigacion/Declaracion-Helsinki-2013-Esp.pdf

8. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014 Aug 1;35(29):1925-31.

9. Min Oh S, Stefani KM, Chang Kim H. Development and application of chronic disease risk prediction models. Yonsei Med J. 2014 Jul;55(4):853-60. doi: 10.3349/ymj.2014.55.4.853

10. Cox DR. The regression analysis of binary sequences (with discussion). J Roy Stat Soc B. 1958;20:215–42.

11. López-Roldán P, Fachelli S. Análisis de regresión logística. En: Metodología de la investigación social cuantitativa [Internet]. Bellaterra: Universitat Autónoma de Barcelona; 2016 [citado 25 Ago 2017]. Disponible en: https://ddd.uab.cat/pub/caplli/2016/163565/metinvsoccua_a2016_cap1-3.pdf

12. González-Ferrer V, González-Ferrer Y, Ramírez-Marino M. Statistical Modeling in Health Research: Purpose Drives Approach. MEDICC Review [Internet]. 2017 [citado 25 Ago 2017];19(2-3): [aprox. 4 p.]. Disponible en: http://www.redalyc.org/pdf/4375/437552190012.pdf

13. Sainani KL. Logistic regression. PM R. 2014 Dec;6(12):1157-62. doi: 10.1016/j.pmrj.2014.10.006. PubMed PMID:25463689

14. McDonald JH. Simple logistic regression. En: Handbook of Biological Statistics. 3ra ed. Baltimore: Sparky House Publishing; 2014. p. 238-46.

15. Barón López FJ. Identificación de factores de riesgo. En: Apuntes de Bioestadística: Tercer ciclo en Ciencias de la Salud y Medicina. Málaga: Universidad de Málaga; 2004. p. 50-7.

16. Pérez Hoyos S, Téllez Montiel F. Introducción a la regresión logística [Internet]. Valencia: IVESP; 1996 [citado 25 Ago 2017]. Disponible en: http://publicaciones.san.gva.es/publicaciones/documentos/Quaderns_7V.2144-1996.pdf

17. SEH-LELHA. Bioestadística. La regresión logística (II) [Internet]. España: Sociedad Española de Hipertensión, Liga Española para la Lucha contra la Hipertensión Arterial; c1997-2006 [actualizado 15 Jun 2016; citado 18 Jul 2016]: [aprox. 4 p.]. Disponible en: https://www.seh-lelha.org/la-regresion-logistica/

18. Royston P, Moons K, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. BMJ. 2009 Mar 31;338:b604. doi: 10.1136/bmj.b604

19. Sauerbrei W. The use of resampling methods to simplify regression models in medical statistics. Appl Statist. 1999;48(3):313-29.

20. Berlanga V, Vilá Baños R. Cómo obtener un Modelo de Regresión Logística Binaria con SPSS. Revistad'Innovació i Recerca en Educació [Internet]. 2014 [citado 10 Dic 2016];7(2):[aprox. 4 p.]. Disponible en: http://www.raco.cat/index.php/REIRE/article/view/278697/366441

21. Iglesias Cabo T. Métodos de bondad de ajuste en regresión logística [tesis]. Granada: Universidad de Granada; 2013. Disponible en: http://masteres.ugr.es/moea/pages/tfm-1213/tfm_iglesiascabo_tania/

22. Llopis Pérez J. La estadística: una orquesta hecha instrumento, aplicación del test de hosmer-Lemeshow en medicina [Internet]. 2014 Abr 2 [citado 10 Dic 2016]. Disponible en: https://estadisticaorquestainstrumento.wordpress.com/2014/04/02/aplicacion-del-test-de-hosmer-lemeshow-en-medicina/

23. Hosmer DW, Lemeshow S, Sturdivant RX. Applied logistic regression. 3ra ed. New York: Wiley; 2013.

24. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the Performance of Prediction Models. A Framework for Traditional and Novel Measures. Epidemiology. 2010 Jan;21(1):128-38. doi: 10.1097/EDE.0b013e3181c30fb2

25. Latour J, Abraira V, Cabello JB, López Sánchez J. Las mediciones clínicas en cardiología: validez y errores de medición. Rev Esp Cardiol. 1997;50(2):117-28.

26. Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve analysis for medical diagnostic test evaluation. Caspian J Intern Med [Internet]. 2013 [citado 1 Abr 2017];4(2):627-35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755824/

27. Gonçalves L, Subtil A, Oliveira MR, Zea Bermúdez P. ROC curve estimation-an overview. Revstat - Statistical Journal [Internet]. 2014 [citado 1 Abr 2017];12(1):1-20. Disponible en: https://www.ine.pt/revstat/pdf/rs140101.pdf

28. Fawcett T. ROC graphs: notes and practical considerations for researchers; Technical Report HPL-2003-4 [Internet]. HP Laboratories, Palo Alto, CA; 2004 [citado 1 abr 2017]. Disponible en: http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf

29. Kleinbaum DG, Klein M. Assessing discriminatory performance of a bianry logistic model: Roc curves. In: Logistic Regression, Statistics for Biology and Health. New York: Springer Science; Business Media, LLC; 2010. p. 345-87.

30. Christopher B, Herbert D. Receiver operating characteristics curves and related decision measures: A tutorial. Chemometrics and intelligent laboratory systems. ScienceDirect [Internet]. 2006 Jan 20 [citado 1 abr 2017];80(1):24-38. Disponible en: https://www.sciencedirect.com/science/article/pii/S0169743905000766

Published

2018-01-01

How to Cite

1.
Rodríguez Rueda JM, González Ferrer V, Montero González T de J, Consuegra Carvajal AN. Binary logistic regression to create a predictive model of liver damage in the septic patient. Acta Méd Centro [Internet]. 2018 Jan. 1 [cited 2025 Jul. 13];12(1):10-8. Available from: https://revactamedicacentro.sld.cu/index.php/amc/article/view/874

Issue

Section

Original Articles