Evaluation of the behavior of five intersomatic cervical spacers using the finite element method

Authors

Keywords:

cervical arthrodesis, intersomatic grafting, finite elements

Abstract

Introduction: cervical pain is a symptom frequently found in clinical practice. One of the most frequent treatments for this condition, specifically for disc herniations, is discectomy with anterior cervical arthrodesis. The use of iliac crest graft is the habitual practice in Cuba, although it is gathered the antecedent of the use of other materials.
Objective: to compare the behavior of grafts of bovine cortical, hydroxyapatite, polymethylmethacrylate, chromium-cobalt-molybdenum and tricortical autograft of iliac crest in the intervertebral space C6-C7 before the usual loads of cervical column.
Methods: an experimental study was carried out by means of numerical simulation according to the finite element method, the different grafts were subjected to the axial loads recommended by the ASTM F2423-11e ISO 18192-1.2011 standards by means of the Free CAD 0.18 software in the C6-C7 space of an experimental model of the cervical spine.
Results: the highest stresses supported by different grafts were: tricortical: 19190 kPa, xenograft: 13210 kPa, hydroxyapatite without porosity and with 50% porosity: 41500 kPa and 45100 kPa, respectively, polymethylmethacrylate: 4440 kPa and chrome-cobalt-molybdenum: 148470 kPa.
Conclusions: all the grafts resisted the applied load except for the hydroxyapatite with 50% porosity. The tricortical graft described an adequate behavior. All caused stress in the adjacent vertebrae, mostly polymethylmethacrylate and chromium-cobalt-molybdenum.

Downloads

Download data is not yet available.

Author Biographies

Juan Carlos Lage Barroso, Hospital Provincial General "Camilo Cienfuegos"

Especialista en I Grado en Neurocirugía. Investigador Agregado.

Ernesto Fleites Marrero, Clínica Central "Cira García"

Especialista en I y II Grado en Ortopedia y Traumatología

Ariel Álvarez Rodríguez, Hospital Provincial General "Camilo Cienfuegos"

Especialista en I Grado en Neurocirugía. Profesor Auxiliar en la Universidad de Ciencias Médicas de Sancti Spíritus.

Eddy Ameth García García, Hospital Provincial General "Camilo Cienfuegos"

Especialista en I Grado en Neurocirugía. Aspirante a Investigador.

References

1.Paziuk T, Rihn J. Cervical spine surgery: complications and considerations. Semin Spine Surg [Internet]. 2019 Dic [citado 12/01/2020];31(4):100751. Disponible en: https://www.clinicalkey.es/service/content/pdf/watermarked/1-s2.0-S1040738319300772. https://doi.org/10.1016/j.semss.2019.100751

2.Hammer C, Heller J, Kepler C. Epidemiology and pathophysiology of cervical disc herniation. Semin Spine Surg [Internet]. 2016 Jun [citado 12/01/2020];28(2):64-7. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S1040738315001306

3.Gould H, Sohail OA, Haines CM. Anterior cervical discectomy and fusion: Techniques, complications, and future directives. Semin Spine Surg [Internet]. 2020 Mar [citado 18/03/2020]:100772. Disponible en: https://www.sciencedirect.com/science/article/pii/S104073831930098X

4.Coombs DJ, Rullkoetter PJ, Laz PJ. Efficient probabilistic finite element analysis of a lumbar motion segment. J Biomech [Internet]. 2017 Aug [citado 12/01/2020];61:65-74. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S0021929017303615

5.Doicin CV, Ulmeanu ME, Frincu AS, Enache VC. Concept development of a new lumbar intervertebral disk implant. MATEC Web Conf [Internet]. 2017 [citado 12/01/2020]:137:1-12. Disponible en: https://www.matec-conferences.org/articles/matecconf/pdf/2017/51/matecconf_mtem2017_02002.pdf

6.Santos Coto CA, Rubino Ruiz R, Rivas Hernández R, Fleites Marrero E. Uso del hueso bovino en la fusión cervical sin instrumentación. Rev Cubana Ortop Traumatol [Internet]. 2011 Ene-Jun [citado 12/01/2020]. 25(1):69-79. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-215X2011000100006

7.Pereira Riverón R, de Jongh Cobo E, Bermejo Sánchez JC, Fernández Benítez SA. Hidroxiapatita en la estabilización y fusión intervertebral cervical baja. Rev Cubana Cir [Internet]. 1997 Sep-Dic [citado 12/01/2020];36(3):165-171. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-74931997000300004

8.Lacerda Gallardo AJ, Mazorra Pazos MJ, Mederos Víctores F, Quintana Zaez J, Concepción Roselló YA, Valdivieso Caraguay GP, et al. Discectomía simple y discectomía más fusión con discos de polimetilmetacrilato para el tratamiento de la hernia discal cervical. Rev Cubana Neurol Neurocir [Internet]. 2019 Ene-Jul [citado 12/01/2020];9(1):e292-e318. Disponible en: http://www.revneuro.sld.cu/index.php/neu/article/view/292/520

9.Schwer LE. Guide for verification and validation in computational solid mechanics. United States of America: The American Society of Mechanical Engineers; 2006 [citado 12/01/2020]. Disponible en: https://cstools.asme.org/csconnect/FileUpload.cfm?View=yes&ID=24816

10.Gallegos Nieto E, Medellín Castillo HI, de Lande DF. Análisis del desempeño estructural de andamios de hidroxiapatita utilizados en ingeniería tisular. Ingenier Mecáni Tecnolog Desarroll [Internet]. 2013 Sep [citado 12/01/2020];4(5):185-194. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-73812013000200006

11.ASTM Internacional [Internet]. West Conshohocken: ASTM; c1996 [citado 12/01/2020]. ASTM F2423-11 Standard guide for functional, kinematic, and wear assessment of total disc prostheses [aprox. 2 pantallas]. Disponible en: https://www.astm.org/Standards/F2423.htm

12.ISO: International Organization for Standardization [Internet]. Geneva: ISO; 2011 [citado 12/01/2020]. ISO 18192-1:2011 Implants for surgery — Wear of total intervertebral spinal disc prostheses — Part 1: Loading and displacement parameters for wear testing and corresponding environmental conditions for tests. Disponible en: https://www.iso.org/obp/ui/#iso:std:iso:18192:-1:ed-2:v1:en

13.Fragkou K. Mechanical and computational modeling of implants. [Tesis de Maestría]. Patras: University of Patras; 2017 [citado 12/01/2020]. Disponible en: https://nemertes.lis.upatras.gr/jspui/bitstream/10889/10905/3/Nemertes_Fragkou%28ele%29.pdf

14.Kurts SM, Edidin AA. Spine technology handbook. 1st ed. Burlington: Elsevier; 2006.

15.Arroyo Pérez S. Diseño y análisis de una prótesis de disco lumbar por invasión lateral [Tesis de Maestría]. Ciudad de México: Instituto Politécnico Nacional; 2017 [citado 12/01/2020]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/20772/Diseno%20y%20analisis%20de%20una%20protesis%20de%20disco%20lumbar.pdf?sequence=1&isAllowed=y

16.Ren Ch, Song Y, Xue Y, Yang X, Zhou Ch. Evaluation of bioabsorbable multiamino acid copolymer/nanohydroxyapatite/calcium sulfate cage in goat spine model. World Neurosurg [Internet]. 2017 Jul [citado 12/01/2020];103:341-7. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S1878875017305004

17.Hu B, Wang L, Song Y, Hu Y, Lyu Q, Liu L, et al. A comparison of long-term outcomes of nanohydroxyapatite/polyamide-66 cage and titanium mesh cage in anterior cervical corpectomy and fusion: A clinical follow-up study of least 8 years. Clin Neurol Neurosurg [Internet]. 2019 Jan [citado 12/01/2020];176:25-9. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S0303846718304487

18.Ji-Won K, Sun Hee B, Tae Hyun P, Sung-Jae L, Hwan-Mo L, Soo-Bin L, et al. Biomechanical comparison of cervical discectomy/fusion model using allograft spacers between anterior and posterior fixation methods (lateral mass and pedicle screw) [Internet]. Clin Biomech (Bristol, Avon) 2020 Mar [citado 18/03/2020];73:226-33. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S0268003320300449. https://doi.org/10.1016/j.clinbiomech.2020.01.018

19.Pan HCh, Wang YCh, Lee ChH, Yang DY. Hollow bone cement fillet with impacted cancellous bone as a substitute for bone grafts in cervical spine fusion. J Clin Neurosci [Internet]. 2007 Feb [citado 12/01/2020];14(2):143-7. Disponible en: https://europepmc.org/article/med/17161288

20.Silva LM, Rosso JM, Bonadio TGM, Silva DM, Dias GS, Weinand WR, et al. On mechanical properties and bioactivity of PVDF-BCP composites. Cerâmica [Internet]. 2018 Jul-Sep [citado 12/01/2020]:64(371):359-66.Disponible en: https://www.scielo.br/scielo.php?pid=S0366-69132018000300359&script=sci_arttext

21.García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone [Internet]. 2015 Dec [citado 12/01/2020];81:112-121. Disponible en: https://www.clinicalkey.es/#!/content/playContent/1-s2.0-S8756328215002793. https://doi.org/10.1016/j.bone.2015.07.007

Published

2020-10-09

How to Cite

1.
Lage Barroso JC, Fleites Marrero E, Álvarez Rodríguez A, García García EA. Evaluation of the behavior of five intersomatic cervical spacers using the finite element method. Acta Méd Centro [Internet]. 2020 Oct. 9 [cited 2025 Jul. 1];14(4):479-88. Available from: https://revactamedicacentro.sld.cu/index.php/amc/article/view/1273

Issue

Section

Original Articles